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Tricritical points in the Sherrington-Kirkpatrick model in the presence of discrete random
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João M. de Araújo
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The infinite-range-interaction Ising spin glass is considered in the presence of an external random magnetic
field following a trimodal~three-peak! distribution. Such a distribution corresponds to a bimodal added to a
probability p0 for a field dilution, in such a way that at each site the fieldhi obeysP(hi)5p1d(hi2h0)
1p0d(hi)1p2d(hi1h0). The model is studied through the replica method and phase diagrams are obtained
within the replica-symmetry approximation. It is shown that the border of the ferromagnetic phase may present,
for conveniently chosen values ofp0 andh0, first-order phase transitions, as well as tricritical points at finite
temperatures. Analogous to what happens for the Ising ferromagnet under a trimodal random field, it is verified
that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these
transitions are reduced for increasing values ofp0. Whenever thed function at the origin becomes comparable
to those athi56h0, first-order phase transitions disappear; in fact, the threshold valuep0* , above which all
phase transitions are continuous, is calculated analytically asp0* 52(e3/212)21'0.308 56. The ferromagnetic
boundary at zero temperature also exhibits an interesting behavior: for 0,p0,p0* , a single tricritical point
occurs, whereas ifp0.p0* the critical frontier is completely continuous; however, forp05p0* , a fourth-order
critical point appears. Stability analysis of the replica-symmetric solution is performed and the regions of
validity of such a solution are identified; in particular, the Almeida-Thouless line in the plane field versus
temperature is shown to depend on the weightp0.

PACS number~s!: 05.50.1q, 64.60.2i, 75.10.Nr, 75.50.Lk
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I. INTRODUCTION

Among disordered magnets@1#, spin glasses@2–4#, and
ferromagnets in the presence of random fields@5–8# may be
singled out as two of the most puzzling and controvers
systems in condensed matter physics. The random-field I
model~RFIM!, introduced by Imry and Ma@9#, has attracted
much interest since the identification of its physical reali
tions. Probably the most important physical conception
the RFIM is a diluted Ising antiferromagnet in the presen
of a uniform magnetic field@10,11#. Many diluted antiferro-
magnets have now been investigated, in such a way
systems like FexZn12xF2 and FexMg12xCl2 are nowadays
considered as standard experimental realizations of
RFIM @12,13#.

From the theoretical point of view, many important ingr
dients remain unknown. At the mean-field level, it is w
known that different probability distributions for the rando
fields may lead to distinct phase diagrams, e.g., a Gaus
probability distribution yields a continuous ferromagnet
paramagnetic boundary@14#, whereas for a bimodal distribu
tion, this boundary exhibits a continuous piece at high te
peratures ending up at a tricritical point, which is followe
by a first-order phase transition at low temperatures@15#.
Such a contrast in the mean-field phase diagrams of
PRE 611063-651X/2000/61~3!/2232~9!/$15.00
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RFIM with bimodal and Gaussian probability distribution
has been proven rigorously@16#. Indeed, Aharony@15# ar-
gued that whenever an analytic symmetric distribution
the fields presents a minimum at zero field, one should
pect a tricritical point and a first-order transition for suf
ciently low temperatures. Further studies of the RFIM at
mean-field level have considered a trimodal~three-peak! dis-
tribution @17,18#

P~hi !5p1d~hi2h0!1p0d~hi !1p2d~hi1h0!, ~1.1!

in its symmetrical form, i.e.,p15p25 1
2 (12p0). Such a

distribution, which may be interpreted as a bimodal added
a dilution in the fields with probabilityp0 @17#, is expected to
mimic real systems better than its bimodal counterpart. It
been shown that the field dilution plays an important role
the occurrence of the tricritical point: distinct analyses le
to slightly different estimates for the threshold value abo
which the tricritical point disappears~whereas the analysis o
Mattis @17# shows that the tricritical point vanishes forp0
.0.25, according to Kaufmanet al. @18# such a behavior
should occur forp0.0.24). Whether the features in th
mean-field phase diagrams of the RFIM should prevail
short-range-interaction models represents a point that ha
tracted a lot of interest@19–22#. For the three-dimensiona
2232 ©2000 The American Physical Society
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PRE 61 2233TRICRITICAL POINTS IN THE SHERRINGTON- . . .
RFIM, recent Monte Carlo simulations detect a jump in t
magnetization but no latent heat, for both bimodal@19# and
Gaussian@20# distributions, whereas high-temperature ser
expansions@21# and a zero-temperature scaling analysis@22#
find a continuous transition for both distributions. Howev
in four dimensions the same zero-temperature analysis@22#
leads to a first-order transition in the bimodal case an
continuous one for a Gaussian distribution, in agreem
with the mean-field predictions. Apart from that, the low
temperature phase of the RFIM, in finite dimensions, m
present a nontrivial structure, with a complicated free-ene
landscape, as suggested by perturbative analyses@23,24#.

The Ising spin-glass~ISG! problem has become, nowa
days, one of the most controversial issues in the physic
disordered magnets. Its mean-field theory, based on the
lution of the infinite-range-interaction model, the so-call
Sherrington-Kirkpatrick~SK! model @25#, presents a quite
nontrivial behavior. The correct low-temperature solution,
proposed by Parisi@26#, consists of a continuous orde
parameter function~i.e., an infinite number of order param
eters! associated with many low-energy states, a proced
which is usually denominated the replica-symmetry break
~RSB!. Furthermore, a transition in the presence of an ex
nal magnetic field, known as the Almeida-Thouless~AT! line
@27#, is found in the solution of the SK model: such a lin
separates a low-temperature region, characterized by R
from a high-temperature one, where a simple one-param
solution, denominated as replica-symmetric~RS! solution, is
stable. The validity of the results of the SK model for t
description of real~short-range-interaction! systems repre-
sents a very polemic question@2#. The rival theory is the
droplet model@28#, based on domain-wall renormalization
group arguments for spin glasses@29,30#. According to the
droplet model, the low-temperature phase of anyfinite-
dimensionalshort-range spin glass should be described
terms of a single thermodynamic state~together, of course
with its corresponding time-reversed counterpart!, i.e., essen-
tially a RS-type of solution. Obviously, the droplet mod
becomes questionable for increasing dimensionalities, wh
one expects the existence of a finite upper criti
dimension—believed to be six for the ISG@31#—above
which the mean-field picture should prevail. Recent analy
of short-range ISG’s on diamond hierarchical lattices~on
which the Migdal-Kadanoff renormalization group is exa!
have found evidence of the droplet picture@32#; however, the
applicability of such lattices for the description of ISG’s o
Bravais lattices is doubtful@33,34#. Numerical simulations
are very hard to carry out for short-range ISG’s on a cu
lattice, due to large thermalization times@33#; as a conse-
quence, no conclusive results in three-dimensional syst
are available. However, in four dimensions the critical te
perature is much higher, making thermalization easier; in
case, many works claim to have observed some mean-
features@35#.

From the theoretical point of view these two problem
~RFIM and ISG!, have been, in most cases, studied se
rately, with a few exceptions@36–40#. However, many di-
luted antiferromagnets, like FexZn12xF2 @41# and
FexMg12xCl2 @42,43#, are able to exhibit, within certain con
centration ranges, random-field, spin-glass, or both beh
iors. For FexZn12xF2, one gets a RFIM forx>0.40 and an
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ISG for x<0.24, whereas for intermediate concentratio
(0.24<x<0.40) one may observe both behaviors depend
on the magnitude of the applied external magnetic fi
@RFIM ~ISG! for small ~large! magnetic fields#, with a cross-
over between them; this latter effect was observed
Fe0.31Zn0.69F2 @41#. Certainly, such properties are expected
be properly explained only if one considers a model t
takes into account both spin-glass and random-field ingr
ents. Indeed, the crossover observed in Fe0.31Zn0.69F2 was
also found in a study of the SK model under a Gauss
random field@38#. On the other hand, a study of the S
model in the presence of a bimodal random field produ
interesting results, with first-order phase transitions and t
ritical points @39#; such results may be relevant for explai
ing the first-order phase transitions observed in FexMg12xCl2
@13#.

In the present work we study the SK model in the pre
ence of a random field following a trimodal probability di
tribution @see Eq.~1.1!#. In addition to that, one may inter
polate between the bimodal distribution and a behavior t
is qualitatively analogous to the Gaussian one, since
monitoring thed function at the origin, one is able to contro
the presence of tricritical points. In the next section we d
fine the model and, through the use of the replica method,
find its free-energy density, equations of state, and equat
for the validity of the RS solution. In Sec. III we exhibit an
discuss the phase diagrams of the model. Finally, in Sec
we present our conclusions.

II. THE MODEL AND REPLICA FORMALISM

The mean-field theory of the ISG is usually formulated
a set ofN spins, each of them interacting with all others@a
total of 1/2N(N21) interactions#, known as the SK mode
@25#. The SK model in the presence of an external rand
magnetic field may be defined in terms of the Hamiltoni
@38,39#,

H52(
( i j )

Ji j SiSj2(
i

hiSi , ~2.1!

whereSi561, with i 51,2, . . . ,N, and the interactions are
infinite-range-like, i.e., the sum( ( i , j ) applies to all distinct
pairs of spins. The coupling constants$Ji j % and the random
fields $hi% are quenched variables, following independe
probability distributions,

P~Ji j !5S N

2pJ2D 1/2

expF2
N

2J2 S Ji j 2
J0

N D 2G , ~2.2!

with P(hi) given by Eq.~1.1! (p11p01p251). Let us, for
the moment, keep the trimodal probability distribution in
general form of Eq.~1.1!; later on, we will see that the fer
romagnetic boundary does not exist forp1Þp2 , and so, in
such a case, we will be restricted to the symmetrical fo
p15p25 1

2 (12p0). It should be mentioned that the abov
randomnesses ($Ji j % and $hi%) are usually correlated in rea
systems; herein for the sake of simplicity we shall consi
two independent probability distributions. Therefore, for
given realization of bonds and site fields, ($Ji j %,$hi%), one
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2234 PRE 61DE ARAÚJO, NOBRE, AND DA COSTA
has a corresponding free energy,F($Ji j %,$hi%), such that the
average over the disorder,@ #J,h , may be performed as inde
pendent integrals,

@F~$Ji j %,$hi%!#J,h5E )
( i j )

@dJi j P~Ji j !#)
i

@dhi P~hi !#

3F~$Ji j %,$hi%!. ~2.3!

The usual procedure consists in applying the rep
method@3,4#, in such a way as to get the free energy per s
as

2b f 5 lim
N→`

1

N
@ ln Z~$Ji j %,$hi%!#J,h5 lim

N→`

lim
n→0

1

Nn

3~@Zn#J,h21!, ~2.4!

whereZn is the partition function ofn copies of the system
defined in Eq.~2.1! andb51/T ~we work in unitskB51).
Standard calculations lead to

b f 52
~bJ!2

4
1 lim

n→0

1

n
ming~ma,qab!, ~2.5!

where

g~ma,qab!5
bJ0

2 (
a

~ma!21
~bJ!2

2 (
(ab)

~qab!2

2p1 ln Tra exp~H e f f
1 !2p0 ln Tra exp~H e f f

0 !

2p2 ln Tra exp~H e f f
2 !, ~2.6a!

H e f f
6 5bJ0(

a
maSa1~bJ!2 (

(ab)
qabSaSb6bh0(

a
Sa,

~2.6b!

H e f f
0 5bJ0(

a
maSa1~bJ!2 (

(ab)
qabSaSb. ~2.6c!

In the equations above, the sum indexesa and b (a,b
51,2, . . . ,n) are replica labels and( (ab) denote sums ove
distinct pairs of replicas.

The extrema of the functionalg(ma,qab) give us the
equilibrium equations for the magnetization and spin-gl
order parameters, respectively,

ma5p1^Sa&11p0^S
a&01p2^Sa&2 , ~2.7a!

qab5p1^SaSb&11p0^S
aSb&01p2^SaSb&2 ~aÞb!,

~2.7b!

where^&6 and ^&0 refer to thermal averages with respect
the ‘‘effective Hamiltonians’’H e f f

6 andH e f f
0 in Eqs.~2.6b!

and ~2.6c!, respectively.
If one assumes the replica-symmetry~RS! ansatz@25#,

ma5m, ;a; qab5q, ;~ab!, ~2.8!

the free energy per spin@Eq. ~2.5!# and the equilibrium con-
ditions @Eqs.~2.7!# become
a
n

s

b f 52
~bJ!2

4
~12q!21

bJ0

2
m22p1E Dz ln~2 coshj1!

2p0E Dz ln~2 coshj0!2p2E Dz ln~2 coshj2!,

~2.9!

m5p1E Dz tanhj11p0E Dz tanhj01p2E Dz tanhj2,

~2.10!

q5p1E Dz tanh2 j1

1p0E Dz tanh2 j01p2E Dz tanh2 j2, ~2.11!

where

E Dz•••5E
2`

` S 1

2p D 1/2

dzexp~2z2/2!•••, ~2.12!

and

j65bJ0m1bJq1/2z6bh0 , ~2.13a!

j05bJ0m1bJq1/2z. ~2.13b!

Although the spin-glass order parameter@Eq. ~2.11!# is al-
ways induced by a nonzero random field (p0,1), it may
still contribute to a nontrivial behavior; this is provided b
the instability of the RS solution. Such an instability occu
at the AT line@27#,

S T

J D 2

5p1E Dz sech4 j11p0E Dz sech4 j0

1p2E Dz sech4 j2, ~2.14!

which may be obtained through the simultaneous solution
Eqs.~2.14!, ~2.10!, and~2.11!.

In the next section we shall consider the phase diagra
of the model and the regions of instability of the RS solutio
worked out from Eqs.~2.9!–~2.14!.

III. RESULTS AND DISCUSSION

Let us first consider the caseJ050; one may easily see
that the only nontrivial behavior in this case is given by t
AT instability in the plane magnetic field versus temperatu
which may now be obtained from the solution of Eqs.~2.11!
and ~2.14!. The integrals involvingj2 may be easily trans-
formed through the change of variablesz→2z, in such a
way that the AT line may be obtained by solving the set
equations,

S T

J D 2

5~12p0!E Dz sech4~bJq1/2z1bh0!

1p0E Dz sech4~bJq1/2z!, ~3.1a!



f
n

ld
u

f a

-

m

e

lv
s

tly
.

ters,
is

tri-

K

the
f the
le,

r
rob-

en-
on.
be

use

o
e

f a

PRE 61 2235TRICRITICAL POINTS IN THE SHERRINGTON- . . .
q5~12p0!E Dz tanh2~bJq1/2z1bh0!

1p0E Dz tanh2~bJq1/2z!. ~3.1b!

It should be pointed out that the equations above are valid
arbitrary values of the weights in the probability distributio
of Eq. ~1.1!, with p11p2512p0; although the AT line
changes with field dilution, it is not altered under a fie
inversion. The AT lines in the plane magnetic field vers
temperature are exhibited in Fig. 1, for typical values ofp0.
Clearly, the AT line for the bimodal distribution (p050)
@39# is identical to that of the SK model in the presence o
uniform magnetic field@27#, due to the property of invari-
ance under field inversion. For 0,p0,1, one may calculate
analytically the behavior of the AT line in the low-field re
gime (T>J),

12
T

J
>F3~12p0!

4 G1/3S h0

J D 2/3

, ~3.2!

which leads to a slightly modified amplitude, but the sa
low-field exponent as the standard AT line@27#. If one con-
sidersp0;0, the low-temperature behavior of the AT lin
may be easily calculated,

T

J
>

4

3

1

A2p
F ~12p0!expS 2

h0
2

2J2D 1p0G , ~3.3!

which exhibits the usual exponential decay@27#, but with a
shift toward higher temperatures for increasing values ofp0.
In all other situations, the AT lines were calculated by so
ing Eqs.~3.1! numerically. One notices that for high value
of p0, the integrals multiplyingp0 in Eqs. ~3.1! contribute
significantly, in such a way that the AT lines become sligh
independent ofh0, for h0 large enough, as shown in Fig. 1

FIG. 1. The AT lines, for the SK model in the presence o
trimodal random field, in the planeh0 versusT ~in units of J), for
typical values ofp0.
or

s

e

-

From now on, we will be restricted toJ0.0; in this case,
as far as RS is concerned, ifp1Þp2 Eqs.~2.10! and~2.11!
yield nonzero magnetization and spin-glass order parame
leading to trivial behavior. Therefore, for the rest of th
paper we will concentrate on a symmetrical trimodal dis
bution, i.e., p15p25 1

2 (12p0). In this case, the random
field still induces a nonzero value for the parameterq, forc-
ing spin-glass order~unlike the spontaneous order of the S
model in the zero external field@25#!. Therefore, the only
possible phase transition within the RS approximation is
one associated with the magnetization, as in the case o
bimodal distribution@39#. Hence, two phases are possib
namely, the ferromagnetic (mÞ0, qÞ0) and the indepen-
dent (m50, qÞ0) ones. Although in the RFIM this latte
phase is usually said to be paramagnetic, in the present p
lem, within the RS approximation, we shall keep the nom
clature independent, for reasons that will become clear so

The critical frontier separating these two phases may
found by solving the equilibrium equations~2.10! and~2.11!;
in the case of first-order phase transitions, we shall make
of the free energy per spin@Eq. ~2.9!# as well. Expanding Eq.
~2.10! in powers ofm one gets

m5A1~q!m1A3~q!m31A5~q!m51O~m7!, ~3.4!

where the coefficients depend onq @which in its turn depends
on m through Eq.~2.11!#. Expanding Eq.~2.11! in powers of
m,

q5q01
~bJ0!2G

12~bJ!2G
m21O~m4!, ~3.5!

with

G5~12p0!~124r1
113r2

1!1p0~124r1
013r2

0!,
~3.6!

rk
15E Dz tanh2k~bJq0

1/2z1bh0!, ~3.7a!

rk
05E Dz tanh2k~bJq0

1/2z!, ~3.7b!

whereq0 is independent ofm, corresponding to the solution
of Eq. ~2.11! with m50. Substituting the above results int
Eq. ~3.4!, one gets them-independent coefficients of th
power expansion,

A185bJ0@12~12p0!r1
12p0r1

0#, ~3.8a!

A3852
~bJ0!3

3 F112~bJ!2G

12~bJ!2G
GG, ~3.8b!

A5852g
~bJ0!5

30 F118~bJ!2G136~bJ!4G2115~bJ!6G3

12~bJ!2G G ,
~3.8c!

where

g5~12p0!~24134r1
1260r2

1130r3
1!

1p0~24134r1
0260r2

0130r3
0!. ~3.9!
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2236 PRE 61DE ARAÚJO, NOBRE, AND DA COSTA
The critical frontier may be determined using standard p
cedures, as described below.

~i! For continuous phase transitions,A1851 andA38,0.
~ii ! A first-order phase transition occurs wheneverA18

51 andA38.0; the proper critical frontier should be found
in this case, through a Maxwell construction, i.e., by equ
ing the free energies of the two phases.

~iii ! When both types of phase transition are present,
continuous and first-order critical frontiers meet at a tricr
cal point@45#, which defines the limit of validity of the serie
expansions; beyond the tricritical point the magnetization
discontinuous. The location of such a point is determined
settingA185A3850, with the conditionA58,0 satisfied.

In Figs. 2 –4 we show three qualitatively distinct ferr
magnetic boundaries of the present problem, for a typ
value ofp0 (p050.3), compared with those of the bimod
probability distribution (p050). In Fig. 2 there is a single
point along the ferromagnetic boundary at whichA3850;
such a point may not be considered as tricritical, since th
is no first-order phase transition. However, for any value
h0 greater than those of Fig. 2@h0 /J50.9573 (p050) and
h0 /J51.535 26 (p050.3)], one gets first-order phase tra
sitions, and at least one tricritical point. In Fig. 3 we sho
situations where two tricritical points appear along the fer
magnetic boundary; we have verified that, for a fixed va
of p0, such a behavior occurs within a narrow interval ofh0.
In Fig. 4 a single tricritical point emerges, separating a c
tinuous boundary~high temperatures! from a first-order criti-
cal frontier ~low temperatures!. From such phase diagram

FIG. 2. Phase diagramT versusJ0 ~in units of J) of the SK
model in the presence of a trimodal random field withp050.3,
compared with that of the bimodal case (p050), for conveniently
chosen values ofh0. ~a! h0 /J50.9573 (p050); ~b! h0 /J
51.535 26 (p050.3). The ferromagnetic boundaries are contin
ous, except for the points whereA3850 @cf. Eq. ~3.8b!#, represented
by black squares. These choices signal lower bounds forh0, above
which first-order phase transitions occur. The phase nomenclatu
specified in the text, with the low-temperature phases SG and8
delimited by AT lines.
-

t-

e

s
y

al

re
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e

-
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FIG. 3. Phase diagramT versusJ0 ~in units of J) of the SK
model in the presence of a trimodal random field withp050.3,
compared with that of the bimodal case (p050), for conveniently
chosen values ofh0, in such a way as to obtain two tricritical point
~black circles! along the ferromagnetic boundary.~a! h0 /J
50.97 (p050); ~b! h0 /J51.558 (p050.3). The dashed lines
stand for first-order phase transitions. The phase nomenclatu
the same as in Fig. 2.

FIG. 4. Phase diagramT versusJ0 ~in units of J) of the SK
model in the presence of a trimodal random field withp050.3,
compared with that of the bimodal case (p050), for conveniently
chosen values ofh0, in such a way as to obtain a single tricritica
point ~black circle! along the ferromagnetic boundary.~a! h0 /J
51.02 (p050); ~b! h0 /J51.58 (p050.3). The phase nomencla
ture and line representations are as in Figs. 2 and 3.
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PRE 61 2237TRICRITICAL POINTS IN THE SHERRINGTON- . . .
one notices that the main effect of the field dilution is to pu
the tricritical points toward lower temperatures, i.e., the te
perature range over which the first-order transitions oc
decreases.

As mentioned before, although the spin-glass order
rameter is always induced by the random field, it may s
exhibit interesting behavior, associated with the instability
the RS solution. The AT instabilities, given by the soluti
of Eqs. ~2.10!, ~2.11!, and ~2.14! with p15p25 1

2 (12p0),
yield two distinct lines in the phase diagrams of Figs. 2–
depending on whether one is in the independent phasem
50) or in the ferromagnetic (mÞ0) one. In the former case
the AT line is a straight line~independent ofJ0), whereas in
the latter, it presents the usual decrease with temperatur
increasing values ofJ0, in such a way that for low tempera
tures one gets exponential decays,

T

J
>

4

3

1

A2p
H 1

2
~12p0!expF2

~J01h0!2

2J2 G1p0 expF2
J0

2

2J2G
1

1

2
~12p0!expF2

~J02h0!2

2J2 G J . ~3.10!

Herein we shall adopt the usual criteria for identification
the regions where RS is stable and those throughout whi
RSB procedure is necessary@3,4#. The two regions with zero
magnetization will be associated with the paramagnetic~high
temperatures! and spin-glass~low temperatures! phases,
whereas those with nonzero magnetization will be associ
with the ferromagnetic~high temperatures! and mixed-
ferromagnetic~low temperatures! phases. The several phas
exhibited in our phase diagrams are identified as follows

Paramagnetic~P! (m50; q: RS);
Spin-Glass~SG! (m50; q: RSB);
Ferromagnetic~F! (mÞ0; q: RS);
Mixed Ferromagnetic~F8! (mÞ0; q: RSB).

It should be mentioned that the present low-tempera
results are questionable inside the phases F8 and SG, due to
the instability of the RS solution; in particular, the point f
p050.3 where A3850 in Fig. 2, as well as the low
temperature tricritical points of Fig. 3, may completely d
appear under a RSB procedure. However the hi
temperature tricritical points, like those of Figs. 3 and 4,
inside the region of stability of the RS solution and w
persist under more general treatments; we believe that
points are reminiscent of the tricritical point of the bimod
RFIM.

The two AT lines mentioned above usually meet at a c
tinuous ferromagnetic boundary; however, these lines do
match each other across first-order phase transit
@39,40,46#: there is a small~but finite! gap between them in
Figs. 3 and 4.

Let us now investigate the ferromagnetic boundary at z
temperature; forT50 the spin-glass order parameter
trivial (q51), in such a way that one gets for the free ene
and magnetization,
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f 52
J0

2
m22

h0

2
~12p0!FerfS J0m1h0

JA2
D 2erfS J0m2h0

JA2
D G

2
J

A2p
~12p0!H expF2

~J0m1h0!2

2J2 G
1expF2

~J0m2h0!2

2J2 G J 2
2J

A2p
p0H expF2

~J0m!2

2J2 G J ,

~3.11a!

m5
1

2
~12p0!FerfS J0m1h0

JA2
D 1erfS J0m2h0

JA2
D G

1p0 erfS J0m

JA2
D . ~3.11b!

Using a similar procedure as the one for finite temperatu
one may expand Eq.~3.11b!,

m5a1m1a3m31a5m51O~m7!, ~3.12!

where

a15A2

p

J0

J F ~12p0!expS 2
h0

2

2J2D 1p0G , ~3.13a!

a35
1

6
A2

pS J0

J D 3F ~12p0!S h0
2

J2
21D expS 2

h0
2

2J2D 2p0G ,

~3.13b!

a55
1

120
A2

pS J0

J D 5F ~12p0!S h0
4

J4
26

h0
2

J2
13D

3expS 2
h0

2

2J2D 23p0G . ~3.13c!

The critical frontier separating the phases F8 and SG is
shown in Fig. 5 for typical values ofp0. One notices that the
effect of the weightp0 is to favor the continuous line, alon
which a151 with a3,0, i.e.,

J0

J
5Ap

2

1

p01~12p0!exp~2h0
2/2J2!

, ~3.14!

while decreasing the extension of the first-order transit
line. For small values ofp0 these two lines meet at a tricriti
cal point, obtained by solving the equationsa151, a3
50, with the conditiona5,0; within the analysis for finite
temperatures, this corresponds to the situation where
lower-temperature tricritical point~cf. Fig. 3! hits the zero-
temperature axis. Ifp050 such an effect occurs at@39#

h0

J
51;

J0

J
5Ape

2
'2.0664. ~3.15!

We verified that for 0,p0,p0* ~wherep0* will be defined
below!, such a set of equations presents two solutions,
though only one of them represents a tricritical point, sa
fying a5,0. By increasingp0 inside this range, we noticed



-

ap

st
-
r
e
I

as

er
m

n
ro

r

re

ero

t a

m

i-
r

e

-
-
t at

.

e
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that such solutions get closer and collapse forp05p0* . We
calculated analytically p0* 52(e3/212)21'0.308 56, at
which a fourth-order critical point@47# ~characterized bya1
5a35a550, with a7,0) occurs at

h0

J
5A3'1.732 07;

J0

J
5

A2p

6
~e3/212!'2.707 86.

~3.16!

The valuep0* represents a threshold ofp0 above which there
are no first-order transitions for any temperatureT>0. For
p0.p0* the second-order critical frontier of Fig. 5 ap
proaches an asymptote for large values ofh0; indeed, when
p0→1 the zero-temperature ferromagnetic boundary
proaches a straight line atJ0 /J5Ap/2 @see Eq.~3.14!#, char-
acteristic of the SK model in zero field@25#.

It should be mentioned that the finite-temperature ve
gial points whereA3850, like the ones in Fig. 2, are qualita
tively different from the fourth-order critical point found fo
p05p0* at zero temperature, even though both situations r
resent thresholds for the occurrence of tricritical points.
the former case,A58,0, whereas in the latter,A5850. In Fig.
6 we exhibit the behavior of the coefficientsA38 andA58 , for
temperatures along the ferromagnetic frontier, for the c
~b! of Fig. 2, i.e., p050.3 (h0 /J51.535 26), andp0

5p0* (h0 /J5A3). One clearly sees that the fourth-ord
critical point shows up only at zero temperature; its para
eters, as defined in Eq.~3.16!, correspond to the situatio
where the vestigial point of Fig. 2 collapses on the ze
temperature axis.

If 0 ,p0,p0* , it is always possible to obtain first-orde
phase transitions by conveniently choosing the value ofh0.

FIG. 5. The zero-temperature phase diagramh0 versusJ0 ~in
units of J) of the SK model in the presence of a trimodal rando
field, for typical values ofp0. If 0,p0,p0* one always gets tric-
ritical points ~black circles!, followed by first-order phase trans
tions for high values ofh0. Whenp05p0* , one gets a fourth-orde
critical point ~represented by a star!. Above the threshold value
p0* 52(e3/212)21'0.308 56, the critical frontier separating th
phases SG and F8 is continuous.
-

i-

p-
n

e

-

-

In Fig. 7 we exhibit the ranges ofp0 and h0 /J throughout
which first-order phase transitions and tricritical points a
possible along the ferromagnetic boundary. In region~a!,
first-order phase transitions are conceivable at finite and z
temperature, with a single tricritical point~at finite tempera-
tures!: typical examples are shown in Fig. 4. Throughou
very narrow range@region ~b!# two tricritical points appear

FIG. 7. Ranges ofp0 andh0 /J associated with distinct behav
iors for the ferromagnetic boundary.~a! First-order phase transi
tions at finite and zero temperatures, with a single tricritical poin
finite temperatures;~b! two tricritical points with a first-order phase
transition for finite temperatures;~c! continuous phase transitions
The arrows indicates the valuer05r0* .

FIG. 6. The ordinate represents either the coefficientA38 or A58
@Eqs. ~3.8b! and ~3.8c!, respectively# along the ferromagnetic
boundary, forp050.3 (h0 /J51.535 26)~dot-dahed lines! and p0

5p0* (h0 /J5A3) ~full lines!, as a function of temperature. In th
former case,A3850 at T/J>0.25 ~with A58,0), whereas in the
latter,A385A5850 at T50.
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and the first-order phase transition occurs only for finite te
peratures: typical examples are exhibited in Fig. 3. The
gion ~b! is delimited by characteristic values of (p0 ,h0 /J):
~i! the threshold forh0 /J smaller corresponds to the set
points satisfyingA3850, but with no first-order phase trans
tion ~e.g., the vestigial points shown in Fig. 2!; ~ii ! the de-
limiter for h0 /J larger corresponds to the coordinates of t
tricritical points at zero temperature. The vertical line in F
7 is for p05p0* , defining@together with the delimiter~i! of
region ~b!#, the range throughout which the ferromagne
boundary is always continuous@region ~c!#.

IV. CONCLUSION

We have studied the Sherrington-Kirkpatrick spin glass
the presence of random fields$hi%, following a trimodal
~three-peak! probability distribution, which corresponds to
bimodal plus a probabilityp0 for field dilution, i.e., P(hi)
5p1d(hi2h0)1p0d(hi)1p2d(hi1h0). We have used the
replica method and the phase diagrams were obtained w
the replica-symmetry approximation. The boundary of
ferromagnetic phase exhibited an interesting behavior, w
the presence of first-order phase transitions and tricrit
points: within certain ranges forp0 andh0, a single or two
tricritical points were encountered. We have shown that
first-order phase transitions are directly affected by the d
tion in the fields, in such a way that the extension of su
lines is reduced by increasingp0. In fact, there is a threshold
value,p0* 52(e3/212)21'0.308 56, above which the ferro
magnetic boundary is always continuous. Such effects m
be reminiscent of those occurring within the mean-fie
theory of the Ising ferromagnet in the presence of trimo
random fields: the single tricritical point that appears in
case of a bimodal distribution@15# is removed by the pres
ence of thed function at the origin, wheneverp0 becomes
greater than a certain value@17,18#.

At zero temperature, if 0,p0,p0* , the ferromagnetic
critical frontier exhibits a single tricritical point, with a first
order phase transition at high values ofh0. By increasingp0,
the first-order line gets reduced and, forp05p0* , a fourth-
-
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order critical point is observed; forp0.p0* , the ferromag-
netic boundary is always continuous.

Although the spin-glass order parameter is induced b
random field (p0,1), it may still contribute to a nontrivial
behavior, concerning the stability of the replica-symmet
solution. We have calculated the regions of instability
such a solution, leading to the identification of two low
temperature phases, namely, the spin-glass and mixed f
magnetic ones. Besides that, the Almeida-Thouless line
the plane field versus temperature was shown to depen
the weightp0, with different amplitudes~but the same expo
nent! in the low-field regime, and qualitatively distinct high
field behaviors.

We have verified that whenever the ferromagnetic bou
ary presents both continuous and first-order transition li
meeting at a single finite-temperature tricritical point, suc
point is located inside the region of stability of the replic
symmetric solution, and it will not be removed by a replic
symmetry-breaking procedure. However, when two tricritic
points occur along the ferromagnetic boundary, at least
of them ~the one at low temperatures! appears inside the
unstable region, and its existence may be an artifact of
replica-symmetric solution.

The applicability of the present results to the descript
of real systems obviously depends on the survival of
mean-field characteristics in the respective short-ran
interaction versions of Ising spin glasses and the Ising fe
magnet in the presence of a random field. However, the
modal distribution employed herein is expected to mim
real systems better than the bimodal distribution itself. A
though we are not aware of experimental observations
match our results, we believe that the diluted antiferromag
FexMg12xCl2 is a good candidate, since, for convenien
chosen dilutions, it may exhibit first-order phase transitio
@13#, as well as a crossover from first- to second-order
havior @44#.
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